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ABSTRACT

This report refines and extends earlier work having to do with the dependence of elastic

constants of polyethylenes upon density alone, irrespective of molecular architectural and

crystalline morphological details.

It was argued previously that the coupled set of binary microcomposite mechanical property

mixing rules known as the “self-consistent scheme” (“scs”) derived by Hill, Budiansky, and

Berryman is the only known viable approach to explaining, quantitatively, the stiffness-density

relationship observed across a wide density range in semicrystalline polyethylenes.

Upon critical re-examination of the sparse data available in the open literature on bulk moduli

and sonic velocities in these materials, however, it has become evident that revision is needed in

the aspects of the earlier work that dealt with these properties.

Specifically, much-improved agreement has been found between the scs and measured bulk-

modulus values reported by Zoller, by Olabisi and Simha, and by Beret and Prausnitz, among

others.  This finding leads to clear discernment of disparities between observed sound propagation

velocities and predictions of those velocities from elastic constants measured under static or near-

static conditions.  These disparities are well rationalized in terms of the known strong dependence

of the shear modulus of the amorphous component upon deformation rate.  (This dependence was

ignored in the original development.)

The conclusion is that the self-consistent scheme now appears to be even more strongly

supported and generally applicable as an accurate framework for modeling small-deformation

mechanical properties of isotropic polyethylenes than was recognized earlier.
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0. PROLOGUE

“A model should be regarded as suspect if it yields inferences in serious conflict with ANY of

the pertinent properties of a system, regardless of how closely it can be made to agree with some,

especially if there are adjustable parameters.  A model that is consistent with all properties, even if

only approximately, can probably be made more precise, but if it is in irreconcilable conflict with

any part of the evidence, it is destined to be discarded, and in the meantime, predictions and

extrapolations based upon it should be regarded as unreliable.”

—Joel H. Hildebrand

“Theories and Facts about Liquids”

Faraday Disc. Chem. Soc. 66  (1978), 151-159

1. INTRODUCTION

In studies of the stiffness-density relationship in unoriented polyethylenes at room temperature

carried out in 1989-90 and published in 1992, [1] I argued that the so-called “self consistent

scheme” (“scs”) formulated by Hill [2] and Budiansky, [3] and subsequently independently

rederived by Berryman [4] is the only available binary microcomposite mechanical properties

theory that is viable for explaining, quantitatively, the commonly known density dependence of

polyethylene stiffness.

Subsequently, Register [5] discovered that removal of interlaboratory contributions to testing

variability rendered the agreement between the scs theory for Young’s modulus and a large mass of

internally consistent experimental evidence to be much better than had been found in the original

work, [1] and he also showed very easy extensions to cover two additional small-strain properties

commonly compiled, namely yield stresses and strains.  These successes have encouraged us to

place increasing reliance upon the scs as a valid framework for interpreting small-deformation

mechanical property data in polyolefins, and to seek extensions and additional applications.

An especially appealing feature of the self-consistent scheme, which distinguishes it from

several other binary mixing rules to be found in the literature for one mechanical property at a time,
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is this: because they are built-in, the scs always satisfies the interdependencies3 amongst elastic

constants that are well known [6, 7] in continuum elasticity.  Reference 1 paid considerable

attention to establishing simultaneous semi-quantitative (at least) agreement between the scs

formulation and whatever data could be gathered from the literature on the coupled moduli E

(Young’s), G (shear), K  (bulk or compression), and Λ (Lamé’s), along with ν (Poisson’s ratio)

and the sonic velocities cl (longitudinal) and ct (transverse).

In retrospect it has now become clear how the aspects of ref. 1 having to do with bulk moduli

and sonic velocities are in need of correction to make them more accurate and convincing.  The

purpose of this communication is to report improvements that extend the applicability and

explanatory power of the scs formulation, vis-a-vis semicrystalline polyolefins, and thus enhance

its credibility as the binary mixing rule of choice for small-deformation mechanical properties.

2. METHOD

At the time of writing ref. 1, it had not occurred to the author that equation-of-state data for

polyethylene melts could be usefully extrapolated to room temperature to obtain a needed estimate

for the bulk modulus of the amorphous fraction in the semicrystalline polyethylenes of interest.

Thus I overlooked several relevant datasets [8, 9, 10, 11] that should have been taken into account.

At the time, I also failed to appreciate the literature’s standardization [12, 13] upon pseudo-Tait

[14] analysis as the conventional framework for analyzing pressure-volume-temperature data on

polymer melts.  The development below will show that when observed volume-pressure isotherms

are consistently analyzed within the Tait framework, the several available compression dilatometric

studies on polyethylene melts and solids fall into much better agreement with the scs than was

shown in Fig. 10 of ref. 1.  At the same time, however, there arises an apparent disparity between

bulk moduli determined by static compression and values derived from ultrasound velocity

measurements.  Resolution of this disparity, by taking deformation rate effects into account, will

be discussed later.

                                                
3 E = 2(1 + ν)G = 3(1 - 2ν)K



5

2.1 Pseudo-Tait Analysis

The pseudo-Tait equation
   

ρ(P,t) =
ρ(0,t)

1 – Cln 1 + P/B(t)
{1}

or, written as a relative specific volume function,
   ρ– 1(P ,t)

ρ–1(0,t)
=1 – Cln 1+ P/B(t)

{1a}

expresses density (ρ) as a function of temperature (t, in °C) and pressure (P) in terms of of a

constant (C) and a temperature-dependent “Tait parameter,” B(t).  The latter in turn is given by

  B(t) = b0e– b 1t, {2}

where b0 and b1 are constants.  Equation 2 applies to melts;  for the semicrystalline solid case

Olabisi and Simha [9] proposed substituting the model

  B(t) = b0 – b 1t, {2a}

with suitably adjusted values for b0 and b1. For molten polymers, C is often assigned the fixed

value 0.0894, but is sometimes allowed to vary as a curve-fitting parameter.  Equation 1 becomes a

pressure-volume-temperature equation of state upon specifying the low-pressure thermal

expansivity, for example as

   ρ(0,t) = ρ(0,0)e– a0t , {3}

where α0 is a temperature-independent value for the thermal expansion coefficient
   

α = 1
ρ– 1

∂ρ– 1

∂ t P
.

{4}

In practice there is negligible difference between ρ(P,t)|P = 0 and ρ(P,t)|P = 1 atm for present

purposes;  thus, to ignore the distinction, the notation ρ0(t) will be substituted for ρ(P ≤ 1 atm,t).

The constant-temperature pressure derivative of the density, known as the compressibility (β), is

the reciprocal of the bulk modulus (K), or modulus of compressibility; thus
   

K–1 = β = ρ– 1 ∂ρ
∂P t

.
{5}

By combining Eqs. 1 and 5 it it is easily shown that the isothermal modulus of compressibility at

low pressure reduces to the following simple expression involving the Tait parameters:
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  K(0,t) = B(t)/C. {6}

Rearrangement of Eq. 6 and insertion into 1a gives
   ρ– 1(P ,t)

ρ–1(0,t)
=1 – Cln 1+ P

CK0(t) .
{1b}

(The same notational simplification as described above for density will apply to K’s, that is, K0(t)

will mean K(P ≤ 1 atm,t).  Hence, to determine low-pressure isothermal bulk moduli, one fits

isotherms of relative specific volumes vs. pressures with Eq. 1b, using conventional nonlinear

least-squares.

This procedure is exemplified in Fig. 1, which shows compression isotherms for a pair of

solid polyethylenes studied by Hellwege et al. [15]  Extrapolation of those isotherms to zero

pressure was accomplished in ref. 1 by using smoothing spline fits to the data expressed as β(P).

That procedure gave numerical results that differ slightly from those obtained by the procedure

outlined above.  The latter are summarized in Table I.  Similarly, the unit-cell specific volume

isotherms measured by Miyaji and coworkers [16] using x-ray diffraction by semicrystalline

samples under compression lead to somewhat different (lower) bulk moduli for the crystalline

phase when analyzed as above than were earlier obtained by fitting compressibilities with a spline.

The data and fit are displayed in Fig. 2, and the results are also collected in Table I.

Other results assembled in Tables I and II came from application of the pseudo-Tait model to

several sets of data by other authors.  In addition to a few room-temperature observations on

semicrystalline solids, there are also shown extrapolated bulk modulus results for amorphous

material.  These were obtained simply by taking published equations of state for the melt (Table II)

and evaluating them at 23 °C.  The mean of the nine such values listed, 1.84 GPa, coincides

exactly with the estimate obtained by Pastine [11] upon correction of Schuyer’s [17] extrapolated

value (2.0 GPa) for what Pastine says is the adiabatic-isothermal difference to be expected from the

respective heat capacities.  (This agreement must be largely fortuitous, because Pastine’s correction

ignores the frequency-dependent contribution of the shear modulus to the sound velocity, which is

found in the discussion below to be of significance.)  Considering both the extrapolated melt data
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and Schuyer’s result, there seems to be sufficient evidence to warrant supplanting the larger

estimate (2.8 GPa) arrived at in ref. 1.

For the high-density limiting bulk modulus, that of the ideal crystalline phase, it no longer

seems justified to retain the estimate (7.75 GPa) utilized in ref. 1, in view of the downward

revision described above to the value implied by the x-ray data of Miyaji et al.  A reasonable

alternative choice might be the K0 (7.14 GPa) calculated from an empirically based complete

compliance matrix for the polyethylene crystal in the companion paper [18] to ref. 1.  The

remainder of this report pursues the consequences of “recalibrating” the scs model of ref. 1 by

substituting 1.84 and 7.14 GPa as the bulk modulus values for the amorphous and crystalline

components, respectively, at ambient conditions.

3. RESULTS AND DISCUSSION

3.1 Bulk Moduli

Figure 3 compares the relevant experimental K0 values from Table I with the scs theoretical

curve (as a function of density) recomputed using the revised pure-phase estimates just mentioned.

There is clearly a much more robust match between the data and the model here than in the original

work (Fig. 10 of ref. 1).  Furthermore, the corresponding alterations to the scs E(ρ) and G(ρ)

functions turn out to be virtually imperceptible, so that the main conclusions of refs. 1 and 2

regarding applicability to Young’s modulus measurements are unaffected.  It is important to note

that once the curve of Fig. 3 is made to coincide with the calibration points at the ends, there are no

further degrees of freedom left with which to force the curve into agreement with the observations.

Indeed, that happened as a consequence of the scs form, entirely without intervention.  This serves

as strong confirmation of the validity of the self-consistent scheme.

3.2 Longitudinal-Wave Sonic Velocities

There now becomes apparent, however, a disparity between bulk modulus values determined

in static compression and those inferred from measurements [19, 20] of both cl and ct at ultrasonic

frequencies.  Such a disparity was pointed out for a single material crystallized and measured under

high pressure (490 GPa) by Nagata et al. [21]  The general situation is depicted in Fig. 4, where
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the few ultrasound-based K0 results available from the literature [1(Table 3), 19, 20] are compared

with the results previously shown in Fig. 3.  The ultrasound-based K  values in Fig. 4 are reckoned

[19] to be uncertain by about 4%, and yet they all lie above the scs curve by more than the 10% or

less that Pastine [11] estimates should be the likely difference attributable to isothermal vs.

adiabatic conditions of measurement.  The existence of the disparity is further illustrated in Fig. 5,

which indicates measured cl values from several additional studies [21, 22, 23] that did not report

ct and therefore could not be used to infer elastic constants.  Here the unbroken curve depicts the

density dependence of longitudinal sonic velocity, cl(ρ), calculated (ignoring deformation rate

effects) according to [24, 25]

   c l = (K + 4G/3)/ρ , {7}

where K  and G are (static, isothermal) scs values (i.e., values based on data obtained under static

or near-static conditions).  Again, if the sonic velocity data are in error by no more than 5%, the

disparities are clearly significant.  They are not, however, unexpected.

Discussions by Pastine [11] and by Hartmann and Jarzynski [19] both teach that the effective

value of K  should be larger for ultrasound propagation, an adiabatic process, than for static

compression, an isothermal one; and Pastine estimates the magnitude of the difference to be of the

order of 10%.  Furthermore it is well known [26] that, at low frequencies, the storage component

(G′) of the complex shear modulus for a rubbery amorphous polymer is a strongly increasing

function of oscillatory shearing frequency.  Thus it is natural to expect this dependence to be

reflected in cl, if G is made correspondingly frequency dependent in Eq. 7.

Unfortunately, it is beyond the scope of the present development to provide a rigorous

frequency-dependent theoretical alternative to Eq. 7.  Instead, a simple empirical correction scheme

for shifting the cl(ρ) curve to coincide with ultrasound measurements will be proposed here.  The

empirical corrections introduced will be shown to be of entirely plausible magnitudes, but the

derivation of a theoretical model justifying the form of the corrections will not be undertaken.

We proceed by rewriting Eq. 7, as presaged by the discussion just above, in the generalized

form
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   c l = (kK +4gG /3)/ρ , {7a}

where k and g are, respectively, correction factors to account for the effects of cyclic adiabatic

compression-dilation and the frequency dependence of the shear modulus.  Following the

suggestions [11, 19] in the literature, we take k to be a constant with the value 1.1.  We then

explore what g must be like in order to reproduce observed cl values from the literature.  For this

purpose perhaps the largest relevant body of data is that of Piché, [23] who found that

polyethylenes with densities between 0.915 and 0.965 g/cm3 had cl(ρ) values (measured at 3

MHz) closely following the empirical correlation

   c l = a + b(ρ – ρa), {8}

with a = 1363 m/s, b = 10.32(103) (m/s)/(g/cm3), and the room-temperature amorphous density ρa

= 0.852 g/cm3.  Equating the right-hand sides of Eqs. 7a and 8 and solving (numerically) for g(ρ)

leads to the results plotted in Fig. 6.  These results are well represented, over Piché’s experimental

density range, by the following simple (curve-fit) function of G:

   g(ρ) = g(Gscs(ρ)) = 304/G scs
0.8, {9}

where Gscs is in MPa and g is dimensionless.  By substituting from Eq. 9 into 7a, we obtain a

cl(ρ) curve empirically shifted from the static scs case to an ultrasonic measurement frequency of 3

MHz.  In Fig. 7, this is now added to what was previously shown in Fig. 5, and, necessarily, the

match to Piché’s correlation is very good.  But Fig. 7 also shows Eq. 7a, with g given by Eq. 9,

extrapolated well beyond Piché’s lower experimental density limit, all the way to the pure-

amorphous phase density.  This constitutes a prediction that room-temperature cl values for

polyethylenes of very low densities (< 0.9 g/cm3) will lie well above the linear extension of

Piché’s correlation.  The author is aware of almost no cl data on polyethylenes in this density

range, by which the prediction could be tested.  In fact, it appears that the only available data point

is one derived by extrapolation to room temperature (Fig. 8) of cl(t) data obtained on melts by Eby.

[22]  This point is included in Fig. 7, and it falls remarkably close to the extrapolated prediction at

the low end of the possible density range.
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There now remains the question of whether or not the empirical shear-modulus correction

factors given by Eq. 9 are at all plausible.  At the low-density extreme, the value of g given by Eq.

9 is 237;  from there it declines monotonically to unity at a density indistinguishable from that of

the crystalline phase (ρc ≈ 1.01 g/cm3). [1]  It seems quite plausible to expect that fully crystalline

material would require no correction, so we need only to consider whether or not a correction

factor as large as 237 is within reason for amorphous material.  This is easily answered by

inspection of Fig. 9.  This shows G′ measurements made on the melt of an archetypal high-density

polyethylene using a dynamic rheometer, shifted to room temperature according to the usual WLF

time-temperature superposition method. [26]  Obviously G′ increases by more than two orders of

magnitude within four decades of relatively low frequencies, and would tend to level off toward

the MHz range.  Thus a limiting g value as large as given by Eq. 9 is easily justified.

3.3 Transverse-Wave Sonic Velocities

If it is correct to shift from Eq. 7 to 7a using Eq. 9, then Eq. 9 should also be usable to

account for the effect of frequency on shear-wave or transverse sonic velocities, ct.  Thus instead

of [24, 25]

   c t = G /ρ {10}

with G equal to the static scs value, we would now expect ct to be given by

   c t = gG /ρ , {10a}

with the same g(ρ) given by Eq. 9.  Unfortunately, literature data with which to assess this

formulation are very scarce indeed, apparently because strong absorption renders the

measurements rather difficult to make.  Nevertheless, the few reported results are compared with

the unshifted and shifted curves (Eqs. 10 and 10a) in Fig. 10.  Again all of the data lie above the

uncorrected scs predictions.  The observations appear to vary rather less systematically with

density alone than was the case with the collected cl data, but two of the measurements are in very

good agreement with the shifted prediction.  There are probably very good reasons for the apparent

scatter of the data in Fig. 10, but for now it will only be concluded that, clearly, additional
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experimental work is needed to elucidate the relation between ct and the scs elastic constants,

especially in the area of very low densities.

3.4 Extensional-Wave Sonic Velocities

A third variant of sonic velocity measurement in need of reconciliation with scs elastic

constants is a technique utilizing resonance of a low frequency in a slender rod so that only

stretching waves exist.  Thus what is measured is the extensional velocity ce, which depends only

upon the Young’s modulus and the density. [25]  If the experimental conditions satisfy certain

assumptions, ce is given by a simple analog of Eq. 10:

   ce = E/ρ . {11}

It is sometimes stated [25] that the criterion that must be met by the experimental conditions in

order for Eq. 11 to be valid is that the lateral dimension of the rod under test must be small by

comparison with the wavelength of the sound at the measurement frequency.  Morse [24(Eq.

7.43)] derives a more rigorous stipulation involving the angular frequency ω of the sound-wave

motion, the radius r of the rod, the density, and the shear modulus, viz.

   ce = E/ρ if ρω2r 2/G << 1 {11a}

Morse did not provide specific quantitative guidance on what is meant, in this context, by “<< 1.”

A venerable study based on Eq. 11 is that of Davidse, Waterman, and Westerdijk [27]

(“DWW”), who reported a sizable set of (ce,ρ) data measured at kHz frequencies in cylindrical

polyethylene rods 10 cm long and 0.6 cm in diameter.  Their wavelength was 20 cm, so the lateral

dimension-to-wavelength ratio was 0.03, which they took to be small enough to justify reporting

Young’s moduli obtained from the inverse of Eq. 11,

   E = ρce
2. {11b}

It will be shown below that they evidently did not, however, take into account the effects of small

values of G in the inequality attached to Eq. 11a.

Davidse and coworkers themselves compared their Young’s moduli obtained from Eq. 11

with measurements they made by conventional slow unidirectional deformation techniques.  They

noted a disparity amounting to a factor of about 3, but essentially shrugged off this difference as
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attributable to inadequacies in the standard methods (flexural and tensile deformations).

Surprisingly, their results appear to have been uncritically accepted and repeatedly quoted in review

literature [25, 28] for more than a third of a century.

In Fig. 11 are plotted the experimental ce results of Davidse et al., in comparison with ce(ρ)

computed from Eq. 11 with E(ρ) taken from the present scs model.  In Fig. 12, the same

comparison is shown in terms of E vs. density, and here the flexural and tensile modulus results

originally reported for a few of the same materials are included.  To Fig. 12 has also been added

the locus of the Hashin-Shtrickman upper bound [1, 29] corresponding to the scs model.  Many of

the reported ce-based Young’s modulus points lie above this bound, indicating a disparity that

demands to be taken seriously.

A striking reconciliation of the DWW data with the scs model has been found which is

somewhat like the empirical shifting approach utilized above, but which proceeds by a very

different route.  Instead of just solving for a “fudge factor” (however plausible) that will remove

the disparity, let us regard the ratio ρω2r2/G in Morse’s inequality as a      measure    of how much the

DWW experimental conditions depart from satisfying the criterion for Eq. 11 to be valid.

Fortunately, DWW tabulate everything needed to compute this ratio for each of their experiments,

except for G, but surely a good estimate of G in each case is Gscs(ρ), so that will be used.  And

then let us see how the ratio correlates with the departure of the E’s according to Eq. 11b from the

corresponding scs values; that is, let us look at ρce
2/Escs(ρ) vs. ρω2r2/Gscs(ρ).  Figure 13 depicts

the relationship between these two quantities.  What appears there is a spectacular collapse of the

previously unexplained scatter in the ρce
2 data!  The effect is so dramatic that there can be little

doubt of the validity of the implied correction, namely

   E(ce) = ρce
2/max(1,y) where y =0.08222 + 37.28ρω2r2/Gscs(ρ). {12}

The fitted line (y) in Fig. 13 reaches unity at ρω2r2/G = 0.025; this then is the value to be taken as

the concrete numerical limit in Morse’s criterion for the validity of Eq. 11 without correction.  That

is, this analysis implies, instead of 11a,

   ce = E/ρ if ρω2r 2/G ≤ 0.025. {11c}
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We can apply the correction in Eq. 12 inversely to obtain corrected ce values for comparison with

the scs predictions based on Escs, as follows:

  ce
corr. = ce / max(1,y) , {11d}

where y is the same as in Eq. 12.  Figure 11 redrawn with ce values corrected according to Eq. 11d

appears as Fig. 14, for ease of comparison with the original uncorrected DWW results.

4. CONCLUSION

This report has considered two key aspects of the application of the Hill-Budiansky-Berryman

“self-consistent” mechanical properties mixing model to the case of isotropic polyethylenes of

varying crystalline content, and hence density, at ambient conditions.  Compressibility modulus

estimates for the amorphous and crystalline phases were revised downward from those used in

earlier work with this model.  After these revisions, the scs predictions of sound propagation

speeds do not match measured values unless allowance is made for effects of deformation rate

(i.e., frequency) or, in the instance of extensional waves, for mismatch between measurement

conditions and theoretical assumptions made in the data analysis.  The main conclusion is that, for

the materials discussed, the scs remains viable under Hildebrand’s tenet quoted in the prologue:  It

is “[a] model that is consistent with all properties, even if only approximately, [and] can probably

be made more precise ...”

An eventual implication of this work that some will no doubt find unpalatable, if the scs

continues to prove successful in rationalizing additional data, is as follows:  Once the elastic

constants, yield stresses and strains, and sound propagation velocities have been accounted for to

within experimental uncertainties by the two-phase self-consistent model, it follows that it will be

fruitless to seek evidence of higher-order phenomena attributable to “rigid amorphous material,”

“interphases,” and so forth, in the sort of small-deformation experimental data as are routinely

available.
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Table I.†  collected bulk modulus results for polyethylene solids at room temperature
source

(data/report)
sample t ρ0(t) maximum

pressure
Fig. 3
ident.

b0 b1 C B(23 °C) K0(23 °C)

ref. °C g/cm3 MPa MPa MPa/°C  MPa GPa

[Table II] amorphous
mean

23 0.8520  m     1.84

15/this work Lupolen
1811 H

19.4 0.9183 200 h   0.0894 f 2.47

15/Fig. 1 Lupolen
1811 H

19.4 0.9183 200   0.0890v 2.46

15/9 Lupolen
1811 H

19.4 0.9183 200 275.8 1.7442 0.0894 f 235.68 2.64

9/9 HMLPE 20 0.9268 200 os 305.1 1.4765 0.0894 f 271.14 3.03

9/9 BPE 20 0.9320 200 os 323.3 2.2651 0.0894 f 271.20 3.03

30/11 Alathon
7020

25 0.954 1621 wp     3.86

15/this work Marlex 9 20 0.9728 200 h   0.0894 f 4.52

15/Fig. 1 Marlex 9 20 0.9728 200   0.0612v 4.09

15/9 Marlex 9 20 0.9728 200 447.9 2.1720 0.0894 f 397.95 4.45

9/9 LPE 20 0.9794 200 os 475.8 2.2702 0.0894 f 423.59 4.74

16/this work Sholex
6009

25 0.9994 1800 xm   0.0894 f 5.44

16/Fig. 2 Sholex
6009

25 0.9997 1800   0.0940v 5.64

11/this work crystal 25 0.9968 5200,
theory

  0.0894 f 5.95

31/1&18 DA 20 1.0019 785 xi     6.40

18/18 crystal 23 1.0117  j     7.14

† b0 and b1 are for use in eq. 2a.
f fixed
v varied



Table II.*  pseudo-Tait analysis results for polyethylene melts
source

(data/analysis)
sample t ρ0(t) maximum

pressure
b0 b0 b1 C B(23 °C) K0(23 °C)

ref. no. °C g/cm3 MPa kg/cm2 MPa °C-1  MPa GPa

8/8 A 23 0.917 196 1968 193.0 4.7005(10-3) 0.0894 f 173.22 1.94

8/8 C 23 0.917 196 1904 186.7 4.3914(10-3) 0.0894 f 168.78 1.89

8/8 B 23 0.918 196 2005 196.6 4.6005(10-3) 0.0894 f 176.88 1.98

15/9 Lupolen
1811 H

19.4 0.9183 200 187.9 4.796(10-3) 0.0894 f 168.28 1.88

10/10 PE 25 0.92 100 198.73 5.0976(10-3) 0.096959v 176.74 1.82

9/9 HMLPE 20 0.9268 200 168.3 4.292(10-3) 0.0894 f 152.48 1.71

9/9 BPE 20 0.9320 200 177.1 4.699(10-3) 0.0894 f 158.96 1.78

15/9 Marlex 9 20 0.9728 200 173.8 4.558(10-3) 0.0894 f 156.50 1.75

9/9 LPE 20 0.9794 200 176.7 4.661(10-3) 0.0894 f 158.74 1.78

mean 1.84

* b0 and b1 are for use in eq. 2.
f fixed
v varied
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